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Abstract: 

           It is well known that using a global geopotential model, as a reference field, is 

crucial for a high quality local (or regional) gravimetric geoid determination. However, 

the application of this technique would only be reliable, if the region under investigation 

has gravity data contribution to the used harmonic model. EGM96 represents the most 

recent high degree global geopotential model that is completely released to the geodetic 

community. However, during the solution for that model, no Egyptian terrestrial gravity 

data were taken into account. This paper presents an attempt to locally refine the EGM96 

harmonic model to fit Egypt better. Using least-squares collocation technique, corrections 

for the EGM96 spherical harmonic coefficients along with their error estimates are 

predicted based on the recent available gravity data in Egypt. Using the refined EGM96 

model, which will be denoted as EGM96EGR, as a reference field showed an 

improvement in gravity anomaly smoothing by about 40%, which represents a great 

efficiency in low frequency gravity field modeling.      

 

1 Introduction 

         Recently, the remove and restore technique of a global high frequency geopotential 

model is inevitable in most of the new approaches of determining the geoid locally. 

Beside providing long wavelength information and reducing the truncation error (Amin, 

1983), the subtraction of a global field from the local data results in a residual smooth 

field that is essential for an accurate and precise gravity field signals prediction by 

collocation. However, the low frequency part removal and addition would only be 

realistic and meaningful, if the model contains local gravity information from the region 

under study (Hanafy, 1993; El-Tokhey, 1995; El-Sagheer, 1995 and Nassar et al., 2000). 

EGM96 is the most recent high degree global geopotential model that is completely 

available for the geodetic community. Containing new and increased satellite data only, 

high-resolution terrestrial gravity data and altimetry data, EGM96 is superior over the 

other preceding models (Lemoine et al., 1996). The accuracy of geoidal heights 

computed from EGM96 could be as well as a few decimeters in areas having data 

contribution to it (Smith and Milbert, 1997). On the other hand, the accuracy in regions 

with no data contribution to the model could go down to 2-3 meters (Smith, 1998). 

 

          In fact, regarding Egypt, the EGM96 model suffers, as all as the other geopotential 

models, from the absence of the terrestrial gravity data (Amin, 2002). Consequently, a 
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considerable long wavelength error will certainly accompany the process of the remove  

and restore of that model. Thus, the long wavelength information for the Egyptian 

territory cannot be optimally recovered from such global model.  

 

 

       The aim of this study is to refine the EGM96 model using the available Egyptian 

data. Utilizing the least-squares collocation (LSC) technique, the functional relationship 

between the anomalous potential and the spherical harmonic coefficients was exploited to 

predict corrections for these coefficients based on the local Egyptian gravity data. The 

resulting refined model, denoted by EGM96EGR, was evaluated and showed that a 

strong improvement has been achieved over the original model with respect to the 

Egyptian territory. 

 

2 Covariance between the harmonic coefficients and the disturbing potential          

 

         The LSC technique as a general mathematical method is considered one of the best 

techniques for determining any parameter of the Earth’s outer gravity field, on the basis 

of the statistical relationships that exist between these actual parameters. This method 

may also be used to predict what is called signals, which may exist at stations other than 

the data points, e.g. at grid points. These statistical relationships are manifested in the so-

called covariance function. However, if the spherical harmonic coefficients of the 

anomalous potential are to be predicted (as signals), we will need the explicit covariances 

between the harmonic coefficients and the anomalous potential, T, or more practically 

any of its observable functions, such as gravity anomalies, geoid undulations, deflections 

of the vertical, etc. (Tscherning, 2001). In what follows, a compact overview of these 

relations will be outlined.   

 

       Let P and Q be two points with coordinates (φ,λ,r) and (φ',λ',r'), respectively, and 

having spherical distance ψ. If R is the mean radius of the Earth, Pi the Legendre 

polynomials and σi
2
 the potential degree variance. Then, the covariance between the 

values of the anomalous potential T in P and Q is (Heiskanen and Moritz, 1967) 

 

                   ∞ 

cov(P,Q) = Σ σi
2
 . (R

2
/r.r')

i+1
 . Pi(cos ψ) 

                  i=2 

 

                              ∞                                          i                       _                                       _                                                                               

                = Σ (σi
2
/(2i+1)) . R

2
 Σ (R

i
/r

i+1
)Yij(φ,λ) . (R

i
/r'

i+1
)Yij(φ',λ'),                              (1)                                                                                 

                            i=2                                        j=-i 

           _            

where Yij(φ,λ) are the fully normalized surface harmonics, which are given by 

_              _  

Yij(φ,λ) = Pi|j|(sinφ) sin |j|λ,     j < 0 



 3 

_              _ 

Yij(φ,λ) = Pij(sinφ) cos jλ,       j ≥ 0. 

 

 

 

                                                                                                                                       _ 

Analogous to the above convention for the surface spherical harmonics, let Kij be a 

general symbol for a fully normalized (unitless) spherical harmonic coefficient of degree 

i and order j, so that (Tscherning, 1974) 

_       _ 

Kij = Sij                                 j < 0, 

_       _      _ 

Kij = Cij – Jij                          j = 0 and i even, 

_       _ 

Kij = Cij,                                j > 0, or j = 0 and i odd. 

           _  

where Jij are the relevant normal zonal harmonic coefficients induced by the reference 

mean Earth ellipsoid. 

                                                                                                                            _ 

      The covariance between the harmonic potential coefficient GM.Kij/R and the 

anomalous potential is obtained by applying its functional operator, Lij, on the covariance 

function, where 

                                                  ∞                        n   _         _                         _ 

Lij(T) = (1/4πR
2
) ∫∫e ((GM/R). Σ (R/r)

n+1
 Σ Knm Ynm(φ,λ).(R/r)

i+1
.Yij(φ,λ)). 

                                                n=2                   m=-n 

            R
2
. cosφ dφ dλ 

                           _ 

         =  (GM/R).Kij           (m
2
/s

2
),                                                                                    (2)  

 

where the integration is carried out over the whole globe. Thus, applying this function on 

the anomalous potential covariance function, cov(P,Q), it can be proved that the target 

covariance function is given as 

                     _ 

cov((GM/R).Kij, TQ) = Lij(cov(P,Q)) 

                                                                       _                       

                                  = (σi
2
/(2i+1)).(R/r')

i+1
 . Yij(φ',λ').                                                   (3a) 

 

This expression states that the covariance between the anomalous potential at the point Q 

and the scaled (non unitless) harmonic coefficient is simply a function of the relevant 

potential degree variance and the related solid spherical harmonic function evaluated at 

Q. Applying the functional operator once again, one obtains the function’s variance 

(Tscherning, 2001), namely 

                     _                  _ 

cov((GM/R).Kij, (GM/R).Kij) = Lij(Lij(cov(P,Q))) 

 

                                                = σi
2
/(2i+1).                                                                     (3b) 
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                                                                                                              _ 

Eq.(3b) is simply the auto-covariance of the coefficient (GM/R).Kij with itself. It is well 

known that its cross-covariance with any different coefficient is by definition equal to 

zero, due to the orthogonality relationships among the spherical harmonic coefficients 

(Heiskanen and Moritz, 1967). 

        Using the law of covariance propagation, the covariance with an arbitrary (observed) 

gravity field function, Lg, is given by 

                     _ 

cov((GM/R).Kij, gQ) = Lg (Lij(cov(P,Q))) 

                                                                             _ 

                                 = (σi
2
/(2i+1)). Lg ((R/r')

i+1
 .Yij(φ',λ')),                                              (4) 

 

or simply, the functional operator, Lg, is directly applied to the relevant solid spherical 

harmonic. This procedure can then be used for the evaluation of the cross-covariance 

functions between a specific (to be predicted) harmonic coefficient and any point data 

during the LSC prediction process. As can be easily shown above, these cross-covariance 

functions are functions only of the respective degree and order, the (potential) degree 

variance and the spatial location of the data point under consideration.  

 

 

3 Viewing the missing local data long wavelength contribution as a “correction” to 

be applied to the original harmonic model   

 

 

        Let’s first imagine that the local terrestrial gravity data has been incorporated into 

the global solution for the high degree and quality EGM96 global harmonic model. As a 

consequence, the EGM96, as a reference field, would recover the low frequency 

spectrum in a reliable manner during a local geoid solution for Egypt, which would be 

obvious from the great smoothness of the used data after the remove process of the 

EGM96 model. This smoothing effect represents a theoretical necessity for treating the 

anomalous potential and its functions as spatially random signals with possibly very 

small spatial mean signal and standard deviation. This would reflect itself on the statistics 

as well as on the empirical covariance function of the residual data, when using LSC 

technique. In this case, the residual data, after accounting for the topographic effect, 

could be safely assumed to be of a medium-to-high frequency nature (Shaker et al., 

1997). Thus, the model behavior in the relevant region would be surely tuned to reflect 

the characteristics of the collected local data, which represents the best gravity field 

information for its region. Consequently, the resulting referenced local geoid solution 

would be of a better quality. 

 

 

          However, as it is the case in Egypt, if the region under study has no data 

contribution to a global geopotential model, one is certainly faced with an opposite 

situation. Namely, only the global satellite data inherent to the model would be turned on 

during the referencing of the local data and the solution to such a model. This very long 

wavelength effect, which for EGM96 is as high as degree and order 70, although realistic, 
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it is not sufficient to achieve the required geoid quality for modern geodetic requirements. 

In such regions, however, low frequency residual data and residual solutions with 

unrealistically large power would result. In other words, one obtains nonzero “residual” 

low degree information. Such residual information may be miss-interpreted and handled 

as higher frequency one. Hence, it would be accompanied with a long wavelength error 

and would deteriorate the required quality, even if the local data has good coverage and 

resolution. The harmonic model would only succeed in suppressing a small amount of 

lower degrees that approximates the satellite-derived spectrum inherent into it, thus not 

realizing its (intended) nominal maximum resolution (or degree). So, until the local data 

could be internationally introduced to such a high quality model or newer released 

versions, a long wavelength correction for EGM96 is attempted in the current study based 

on the available local data set.  

 

4 Using the remove-restore technique to account for the “residual” long wavelength 

spectrum 

 

             Based on the above discussion, one would agree that incorporating the local data 

into the raw global data model before its establishment is nearly equivalent to use the 

current model in a remove-restore technique and predict an equivalent set of harmonic 

coefficients corrections. Particularly, if the input data are geoidal heights, N, then the 

EGM96 long wavelength geoid component is removed to obtain the residual geoidal data, 

 

Nres = N – NEGM96,                                                                                                           (5a) 

 

where 

                              360           n    _                      _                 _ 

NEGM96 = (GM/rγ) Σ (a/r)
n
  Σ (C

*
nm cos mλ + Snm sin mλ) Pnm(sinθ),                           (5b)                             

                                             n=0          m=0 

 

with 

 

θ                        the geocentric latitude, 

λ                        the geodetic longitude, 

r                         the geocentric radius to the geoid, 

γ(θ,r)                  the normal gravity induced by the WGS-84 reference ellipsoid, 

GM                    the Earth mass-Gravitational constant product consistent with the   

                          EGM96 coefficients, 

a                        the equatorial radius scale factor associated with the EGM96 model, 

_        

C
*
nm                   the EGM96 fully normalized spherical harmonic C-coefficients of degree    

                          n and order m, reduced for the even zonal harmonics of the WGS-84   

                          reference ellipsoid,   

_ 

Snm                              the EGM96 fully normalized spherical harmonic S-coefficients of degree    

                          n and order m, 
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_ 

Pnm(sin θ)          the fully normalized associated Legendre function of degree n and  

                          order m. 

 

The obtained Nres values are then used as input for the LSC solution to receive the 

harmonic coefficients corrections, (GM/R).ΔKij. The unitless coefficients’ corrections, 

ΔKij, are then restored (added back) to the EGM96 relevant coefficients, in order to end 

up with the EGM96EGR coefficients, Kij EGM96EGR,  

_                     _                   

Kij EGM96EGR = Kij EGM96+ ΔKij.                                                                                         (5c) 

 

Our intended procedure could be logic because in this manner, the residual local long 

wavelength spectrum not accounted for by the original model, should be treated in such a 

way so as to incorporate their possibly (local) significant terms into that model. These 

(low frequency) predicted corrections are based on the local residual data that contains 

combined residual low and high frequency information. This is evident as long as the 

used data are point values, which theoretically contain spectral information up to infinity, 

provided the region under study (and the whole globe around it) is continuously covered 

with gravity data. In this ideal case, the Earth’s gravity field would be full determined 

and there would be no need for any statistical tools, and a global geopotential model of 

maximum degree infinity could be achieved theoretically (Tscherning, 1974). However, 

as this fictive data coverage continuity is impossible, the point data would produce a 

maximum spectral limit according to its nominal mean density and distribution. 

 

       One should not worry about the eventual forcing of the coefficients corrections to 

carry higher frequency information inherent to the local data, since there is a one to one 

correspondence between the harmonic coefficients-anomalous potential cross covariance 

functions and their respective degree & order and their modeled degree variances. It is 

easy to show that because the degree variances in that remove procedure is considered 

proportional to the original coefficients error degree variances (Eq.(6)), the coefficients 

that are assumed to be errorless would not receive a correction. This means that the 

resulting harmonic coefficients corrections and (their error estimates) would depend on 

the standard deviations (noise) of relevant original coefficients, reflected by the 

covariance function model, the data noise, the data coverage and resolution. This 

emphasizes the principal property of a LSC solution that produces the same predicted 

value for an errorless observation and an estimate within the ”error-band” of a noisy 

observation. 

  

        On the other hand, the theoretical rule of thumb that e.g. 0.5ºx0.5º mean data would 

contain exactly 180º/0.5º maximum degree information, although instructive and used 

internationally, is based on the supposition that the data are errorless (Meissl, 1971). 

Even if this were true, such a grid of mean gravity anomalies would contain spectral 

information greater than 180º/0.5º, due to the deviation of the grid block mean from the 

mean based on an area-equivalent circular cap (Rapp, 1977). 
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5 Data organization 

        According to the above, and based on the flexibility of the available algorithm to 

deal with point and mean data, it was intended to have a compromise for the data 

organization prior to its use to predict local based corrections for EGM96. The original 

irregular point free air gravity anomaly data was initially used to solve for a 0.5ºx0.5º 

(point values) free air geoid grid covering the Egyptian territory, based on EGM96. The 

(LSC) free air geoid solution was computed relative to the WGS-84 reference ellipsoid. 

 

        This (residual) geoid grid was then used for the estimation of the harmonic 

coefficients’ corrections as well as their error estimates. It also exploits the advantage of 

having an even distribution of the used data with a reasonable number of data points that 

represent, along with their LSC estimated noise, the original data effectively. It was 

essential to have so a limited number of (estimated) data, since the LSC estimation of the 

coefficients corrections, as well as their error estimates, is very time consuming. The 

geoidal height is referred to as the smoothest version of all anomalous potential functions 

(Meissl, 1971). This is evident, due to the fact that the geoid in general has most of its 

power in the low degree (slowly spatially varying) spectral band. Conversely, the (less 

smooth) gravity anomalies, vertical deflections, etc., are poor in the lower degree 

information and the higher frequency spectral bands constitute the majority of its power 

spectrum. As the aim was to estimate harmonic corrections of low degree nature, the 

geoid was suggested to represent the most appropriate start data type to recover this 

information. Table (1) shows the statistics of the input free air geoid grid along with its 

standard deviations.         
 

Table (1) Statistics of the input free air geoid grid (483 points) (units: meters) 

 
Item Mean Std. Dev. RMS Min. Max. 

Geoidal height 13.85 2.90 14.15 6.82 20.94 

Residual geoidal height 0.02 0.95 0.95 -2.66 5.26 

Standard deviation 0.70 0.17 0.72 0.25 0.89 

 

6 Modeling the local covariance function  

        It is well known that the LSC procedure requires the estimation of the isotropic 

empirical covariance function of the residual data. This isotropic covariance function, 

which is a function of the separation between the data points, describes the spatial 

variability of the local residual field under consideration. The main features of this 

function are the variance (covariance at zero distance), the radius of curvature of the 

covariance function curve at the same point and the correlation length, which corresponds 

to a positive covariance value that is equal to half the variance. Of great importance is the 

formulation of the model (analytical) covariance function that is best fitted to the 

empirical one in a least-squares sense. The model covariance is uniquely described 

through three parameters as well be clarified below. In what follows, the general 

considerations and possibilities for modeling the analytical covariance function are 

outlined.  

 

6.1Generalconsiderations                                                                                                 
Generally speaking, a modeled local covariance function that is consistent with the 
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remove-restore of the original model is used to account for the removed spectrum. A 

degree variance that is equal to a scaled error degree variance for the used model is used 

up to the maximal degree of that model. The higher frequency degree variances are 

modeled with a well-established degree variance model (Tscherning and Rapp, 1974). 

The modeled (analytical) covariance function is fitted to the residual anomaly empirical 

covariance function via a nonlinear 3-parameter iterative least-squares adjustment. The 

local isotropic anomaly covariance function model can be given as (Tscherning, 1993) 

 

C(P,Q)= C(r,r',ψ) 

                 nmax                                                                               ∞   

           =Σc.σ
2

neEGM96.(Rb
2
/rr')

n+2
Pn(cosψ)+ΣA.(n-1)/(n-2).(n+24).(Rb

2
/rr')

n+2
.Pn(cosψ),   

            n=2                                                 nmax+1   

                                                                                                                                           (6)                                                                        

where 

ψ                         the spherical distance between the two points P and Q, 

r                          the geocentric radial distance of point P ≈ R+HP,  

r'                         the geocentric radial distance of point Q ≈ R+HQ, 

R                         the mean radius of the Earth, taken ≈ 6371 km, 

Rb                                the radius of the Bjerhammar’s sphere,  

σ
2

neEGM96             the n
th
 anomaly error degree variance based on EGM96 coefficients’  

                            standard errors,   

c                          a positive unitless scale factor, 

A                         a positive constant (mgal
2
), 

Nmax                    360 (max degree of EGM96), 

H                         orthometric height of the respective point.  

 

           The three parameters c, A and (Rb-R) are given firstly approximate values. The 

adjustment is then performed in an iterative manner until the convergence is arrived, 

resulting in the final three parameters c, A in mgal
2
, (Rb-R) in meters and the point 

gravity anomaly variance at MSL as a by-product. These parameters are determined, 

based on the local residual gravity anomaly data, via its empirical covariance function. 

The final values are then used as input for the collocation process. In the LSC solution 

stage, the law of covariance propagation is executed to account for all possible varieties 

of auto-and cross covariances related to the observed functions during the solution 

(Tscherning and Rapp, 1974). For the special case of harmonic coefficients prediction, 

Eq.(4) is used to account for cross-covariance functions between the coefficients 

(corrections) to be predicted and any possible observed anomalous field functions. 

 

         It is worth mentioning that the scale factor “c” is a measure of how well a specific 

harmonic model fits the local data low frequency information. In other words, if the 

model were absolutely consistent with the data low degree part (i.e. had an optimally 

realized local data contribution), one would have a zero scale factor. Intuitively, a value 

of unity for this scale factor could signal that the model achieves its globally estimated 

accuracy in the region under study. Hence, this value can be assumed to be the maximum 

value behind which the model could be judged not to fit the region low frequency 

information well. Thus, in general, the better the model recovers the local data long 
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wavelength spectrum, the smaller is the scale factor, c, than unity and vise versa. 

Consequently, a (possible) miss-modeling of the low frequency part of the data by the 

global model is translated into a magnification of the model’s error spectra in a LSC 

solution and, vise versa. Hence, the so modeled local covariance function will result in  

LSC predictions and error estimates that truly mirror the model accuracy in the region 

under study. This will be of course accompanied with the effect of the local residual field 

variation expressed by its variance, data coverage, resolution and noise.   

 

6.2 Possible procedures for covariance function modeling 

 

           In our special case of harmonic coefficients corrections estimation, a great 

attention should be paid to covariance function modeling, since this item (among other 

factors) is crucial for the resulting predictions along with their error estimates. As will be 

mentioned, the modeling of that function should be consistent with the target task, in 

order to obtain a meaningful solution for the aimed harmonic model corrections. 

 

       If a harmonic model possesses perfect lower degree terms that are consistent with the 

local data, then these coefficients should be left intact. This can be accounted for by 

assigning zero error degree variances for these coefficients in the first term of Eq.(6) and 

in Eq.(3,4). Hence, these coefficients would have zero corrections with zero error 

estimates, thus realizing the goal of keeping these terms fixed. The corrections (and error 

estimates) are then only obtained for the rest of the harmonic model coefficients, based 

on the rest of the error degree variances and the input residual data. Particularly, if the 

first zero point of the residual data empirical covariance function is located at spherical 

distance ψº, then the original model has practically removed 180º/ψº lower degree terms 

from the local data (Meissl, 1971). Again, the corresponding error degree variances could 

be assumed zero for the removed terms in the covariance function model, thus fixing the 

corresponding coefficients in the LSC procedure. As above, the remaining coefficients 

could now receive corrections and error estimates, based on the relevant error degree 

variances and the input data. Also, this trend would be elegant, if the aim is to locally 

extend the resolution of a new satellite only harmonic model, e.g. EGM96S (70,70), 

based only on the Egyptian local gravity data. 

 

       However, as it is the case with modern high degree global harmonic models, it is 

well known that EGM96 had firstly a combined low degree solution up to degree and 

order 70. Namely, the up to 70 degree and order satellite only coefficients were merged 

with global 1ºx1º mean gravity anomalies in a further enhanced combined low degree 

solution again up to degree and order 70. The latter solution was then merged with global 

0.5ºx0.5º mean gravity anomalies in a high-resolution solution up to degree and order 

359, and finally, it was solved for the terms of degree 360 (Lemoine et al., 1996). 

Concerning Egypt, in each of these combined solutions, the Egyptian data should have 

been incorporated in the global data base. Thus, as far as local corrections for a high 

degree global model are concerned, it would be meaningful to seek for local corrections 

for all the EGM96 coefficients (from degree 2 to 360) to compensate the absence of the 

local data during the global solution steps for the EGM96 model. This requires no special 

treatment for covariance function modeling. Thus, the general discussion in Section 6.1 
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will still be valid for this task. The EGM96 corrections will depend mainly on the error 

degree variances of the first summation in the right hand side of Eq.(6) and in Eq.(3,4) 

along with the input residual data. This strategy is used in our current investigation. 

        Moreover, if one is interested in the estimation of harmonic coefficients of degree 

higher than 360, then the second summation in Eq.(6), also accompanied with Eq.(3,4), 

would be the dominant one, since it already contains (non zero) modeled degree 

variances. However, the actual spectral content inherent into the data will judge the 

maximum degree and order of the significant coefficients that could be extracted. 

 

7 Computations 

          In the current work, the original residual anomaly empirical isotropic covariance 

function was also used during the LSC prediction of the coefficients’ corrections. To 

estimate such an isotropic covariance function empirically at a spherical distance ψ, the 

product sum average of pairs of anomaly values, relevant to pairs of points having 

spacing ψ-Δψ/2≤ψ'≤ψ+Δψ/2, was evaluated. Both Δψ and the ψ increment were chosen 

to be 2 minutes of arc and 100 covariance values (at 100 ψ values) were evaluated. Of 

course, such a function is dependent only on the spherical distances between pairs of 

stations, implying the invariance under a rotation of the data points group. An an-

isotropic covariance function would be dependent on the positions of stations 

(Tscherning, 1999). 

 

        Figure (1) illustrates the input residual anomaly isotropic empirical covariance 

function and its associated fitted analytical function. The expression for the fitted 

covariance was as given by Eq.(6) with the following parameters 

 

c                               = 5.961021, 

Rb/R                         = 0.999916, 

A                              = 145.518 mgal
2
,
 

Δg variance at MSL = 760.410   mgal
2
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure (1): Free air residual anomaly empirical and fitted covariance function 
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           The above covariance function parameters, the residual free air geoid data and the 

relevant error estimates were input in the LSC solution for the harmonic coefficients 

corrections along with their error estimates as follows 

 

(GM/R).ΔKij = Cij t.(Ctt + Ett)
-1

 . l,                                                                                   (7a)                                                                     

 

Eij ij                =Cij ij - Cij t.(Ctt + Ett)
-1

 . Cij t 
T
,                                                                   (7b)                                                                     

 

with 

 

(GM/R).ΔKij                       the estimated signal, 

Cij t                                      the cross-covariance vector between the signal and the  

                                           (residual geoid) observations l,    

Ctt                                       the covariance matrix of the (residual geoid) observations, 

Ett                                       the error variance-covariance matrix of the (residual geoid)   

                                           observations, 

l                                          the vector of (residual geoid) observations, 

Eij ij                                                   the estimated error variance of the estimated signal, 

Cij ij                                     the signal variance as given by Eq.(3b).   

 

 

8 Results 

        Recall that the solution for the corrections of the spherical harmonic coefficients 

(along with their error estimates) proceeded in a usual manner such as any remove-

restore technique. The resulting corrections were in major cases significant. The solution, 

however, is very time consuming. The corrections were then added to the relevant 

original coefficients (Eq.(5c)), thus yielding the final locally refined coefficients, based 

on the Egyptian data. Figure (2) shows a graphical representation for the coefficients 

corrections. Figures (2a) and (2b) are simply gray scaled contour maps for the values of 

the corrections applied to the C and S-coefficients, respectively, from degree 2 and order 

zero to degree and order 360. This was done for the sake of an objective and detailed 

overview for the corrections received by the various spectral domains. The numerical 

values and the contour interval can be deduced from the associated gray scale, which 

implies that very significant values for the coefficients could be recovered. However, the 

corrections for the sectorial (m=n) and near sectorial (m≈n) harmonic coefficients were 

negligible in most of the high degrees. These negligible corrections were more 

pronounced after degree and order 150. Thus, these terms could be very good represented 

by the EGM96 model or are not recoverable due to the local data geographical location. 

The first coefficients (from degree and order (2,0) to (10,10)) have received very small 

corrections, but within the number of significant figures of the original coefficients. 

           The EGM96EGR harmonic model was computationally removed from the start 

free air geoid grid, whose residual data were used for predicting the corrections. Table (2) 

shows a comparison between the statistics of the residual 0.5ºx0.5º  geoid  grid  based  on  
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Figure (2a): Graphical representation of Cij corrections (unitless) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2b): Graphical representation of Sij corrections (unitless) 

 

 

Figure (2) 

 

 

removing the EGM96EGR and those pertaining to the original harmonic model. From 

this table, one can notice the large amount of smoothness of the residual geoid data after  
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suppressing the EGM96EGR.  Besides having a smaller mean, a dramatic smoothing in 

terms of standard deviation manifests itself. The standard deviation and RMS of the 

residual geoid have decreased from 0.95 to 0.23 meter, thus having an improvement in 

geoid smoothing by about 76%. Also the minimum and maximum residuals were greatly 

reduced when using the refined model. The interpretation of the new residuals is twofold. 

On one hand, the EGM96EGR possesses a superior long to medium wavelength behavior 

over the original model. On the other hand, after suppressing the new refined model, 

there still exist short wavelength geoid residuals in the spectral domain higher than 

degree and order 360. This, in turn, ensures that the predicted corrections, and hence the 

refined harmonic coefficients, were not forced to absorb spectral information higher than 

the maximal degree of the EGM96 model. 

 

         The EGM96EGR model was also removed from the original scattered point gravity 

anomaly data. Table (3) shows the statistics of the original free air gravity anomaly data, 

the residual gravity anomaly data after removing the EGM96 model, and the residual data 

pertaining to the refined model. The gravity anomaly residual terrain effect was also 

taken into account, using a digital terrain model of Egypt computed by the authors (not 

published yet). 

 
 

Table (2): Comparison between the statistics of the residual free air geoid grids 

(units: meters) 

 
Item Mean Std. Dev. RMS Min. Max. 

Geoid grid - EGM96 0.02 0.95 0.95 -2.66 5.26 

Geoid grid – EGM96EGR 0.01 0.23 0.23 -1.11 1.10 

 

 
Table (3): Comparison among the statistics of the raw and residual gravity anomalies 

(units: mgals) 

 

Item RTM Mean Std. Dev. RMS Min. Max. 

Free air gravity anomaly  -4.193 32.639 32.896 -144.270 227.247 

Residual gravity anomaly 

(using EGM96) 

No 

Yes 

-0.440 

1.752 

27.612 

26.271 

27.605 

26.320 

-155.505 

-160.802 

206.327 

200.094 

Residual gravity anomaly 

(using EGM96EGR) 

No 

Yes 

-0.087 

2.105 

16.642 

15.923 

16.636 

16.056 

-133.337 

-138.634 

121.712 

115.479 

 

 

It is clear from Table (3) that the original model has smoothed the raw gravity anomaly 

by about 15%, in terms of standard deviation and RMS, whereas the refined model has 

about 49% smoothing effect. An improvement over the original model by about 40% has 

been achieved in the standard deviation and RMS of the residual free air gravity data, 

when using the EGM96EGR model. This relatively lower improvement, compared to 

76% in geoid smoothing, is due to the fact that gravity anomaly still contains most of its 

power in the higher frequency spectral domain. The table shows also a greater decrease in 

the mean, minimum and maximum of the residual gravity data, due to the removal of the 
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new refined model. On the other hand, due to the dominant moderate topographic 

variations in Egypt, the residual topographic effect is a minor factor in smoothing the 

gravity anomaly data, as can be noticed from the same table. Hence, concerning Egypt, 

the effect of incorporating the local data in a reference global harmonic model (about 

40% RMS decrease), is much more pronounced than the effect of topographic effect 

(about 5% RMS decrease). Of course, the above remark concerning the guarantee that no 

high spectral information has been shifted to the lower degree terms in the refined model, 

is still valid for the case of gravity anomalies. 

 

                Figure (3) illustrates a plot of the corresponding residual gravity anomalies 

empirical covariance functions. This plot ascertains that the incorporation of the local 

data into the EGM96 model has a very great effect on the smoothness of the covariance 

function, compared to the minor role of the residual topographic effect. Inspecting the 

approximate first zeros of these functions, and using the 180º/ψº theoretical rule of 

thumb, one could recognize that the covariance functions pertaining to the removal of the 

EGM96 has a first zero point tendency near ψ ≈ 2.14º, thus the original model has 

succeeded in suppressing only about 84 degrees from the raw data. This value nearly 

corresponds to the number of the satellite only degrees used in the combined global 

solutions for the original model. On the other hand, the refined model has elegantly 

removed about 360 degrees (ψ ≈ 0.5º) of the local data spectrum, which is a surprising 

result. Hence, the EGM96EGR could be considered to have achieved a toll improvement 

in the low frequency gravity field modeling in Egypt, according to the current available 

data. 

 

 

 

 

 

 

 

 

 

 

   

 

 
 

Figure (3): EGM96 and EGM96EGR related residual anomaly 

empirical covariance functions 

 

9 Conclusions 

 

      From the current investigation, it is clear that the local corrections for the EGM96 

global spherical harmonic model are numerically significant for most of the predicted 

terms. The EGM96EGR model is superior to the original one, regarding the smoothness 

of the respective residual data and its empirical covariance functions. The smoothness of 

the residual geoid height was improved by about 76% over the original model. The 
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gravity anomaly smoothness was improved by about 40%. While the original model 

removal suppresses nearly as many degrees as the satellite only terms, the trend of the 

residual anomaly covariance function showed how elegantly the 360 lower degrees 

spectrum was approximately removed from the data after being referenced to the refined 

model. Thus, for the first time, regarding the Egyptian territory, we can lean on the 

resulting EGM96EGR, tailored to the Egyptian data, which is considered very capable of 

recovering the actual low-medium spectral information in Egypt. 

 

     It is recommended to use this EGM96EGR as a reference low degree field for future 

geoid solutions in Egypt. Moreover, this local corrections procedure could be used in the 

future to incorporate any updated gravity data base to the EGM96 model or into any new 

released version that may have no Egyptian data contribution.  
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